
APPSEALING SECURE

WEBVIEW USER GUIDE
Version 1.0

TABLE OF CONTENTS

1. Introduction

2. Hybrid App security application scenario

3. Integration & Development

 3.1 Development support environment

 3.2 SDK Package Contents

 3.3 Android Studio project settings

 3.3.1 Add AppSealing Secure Webview Library

 3.3.2 Configuration for Java 1.8 support

 3.3.3 Setting to support uncompressed assets

 3.3.4 Build Tool setting

 3.4 Application development guide

 3.4.1 Initialize AppSealing Secure WebView

 3.4.2 Web contents loading

 3.4.3 How to use setUIClient

 3.4.4 How to use setResourceClient

4. Applying AppSealing Hybrid App security service

5. Check Hybrid App security service is applied

Version 1.0

INTRODUCTION

Android WebView provided by Android is used to develop various types of hybrid applications,

such as connecting the native application to the web or creating applications based on local

web content.

Despite the advantages of these hybrid applications, each of the security threats of the native

application and the web application exists due to the characteristics of the hybrid application.

In particular, hybrid applications expose the original source in JavaScript. This makes them

vulnerable to attacks on key algorithms, key information and sensitive data in the business

Hybrid applications developed using AppSealing Secure WebView secure key business logic

code and intellectual property. AppSealing Secure WebView is based on Chromium, and

provides API similar to Android WebView to help developers easily apply AppSealing Secure

WebView.

For details on the HTML5 content encryption process, please refer to the AppSealing website

or this user guide. For additional technical inquiries related to using the SDK, please use the

AppSealing Help Center (https://helpcenter.appsealing.com).

NOTE: AppSealing Secure Webview SDK can be downloaded after joining ADC. After signing

up, you will go through an approval process and you can download it at the ADC site later.

Version 1.0

1. Download AppSealing Secure WebView SDK.

2. Develop Hybrid App to which AppSealing Secure WebView SDK is applied by referring to the

 documents included in AppSealing Secure WebView SDK (this document and AppSealing

 Secure WebView API document and sample app).

3. Verify Hybrid App which AppSealing Secure WebView SDK is applied to through the

 customer's internal development process.

4. Apply AppSealing Hybrid App security service (hereinafter referred to as Hybrid App security

 service) to the app that has been internally verified to apply security for internal content and

 the entire developed app.

5. After confirming the operability of the App to which the Hybrid App security service is

 applied, release it according to the normal development procedure of the customer.

HYBRID APP SECURITY APPLICATION SCENARIO

Appsealing
webview SDK

Apply
Security
Features

Upload
APK

Download
Sealed APK

SDK
Download

Integration
& Development

Validation &
Verification H5 Sealing Release

Version 1.0

INTEGRATION & DEVELOPMENT

3.1 Development support environment

Android 5.0 or higher

This SDK has been tested with Android SDK 3.6.2.

3.2 SDK Package Contents

3.3 Android Studio project settings
You can add the AppSealing Secure WebView SDK to your project with the following process.

3.3.1 Add AppSealing Secure Webview Library

Copy the <AppSealingSecureWebviewLibrary.aar> file to the library file storage space in the

root folder ($ Project_Dir) of the project you are using. If there is no folder for saving the

library in the project folder you are using, create a “libs” folder in the $Project_Dir\app\

folder and copy the <AppSealingSecureWebviewLibrary.aar> file. And add below contents to

build.gradle file

Item

AppSealingSecureWebviewLibrary.aar

AppSealingSecureWebViewSample.zip

AppSealingSecureWebViewAPIDoc.zip

Description

Android library file containing various
resources, assets, and native libraries that
make up AppSealing Secure WebView

Android studio project files containing
sample app

APIs list and descriptions provided by
AppSealing Secure WebView

Version 1.0

INTEGRATION & DEVELOPMENT

dependencies {
...
 implementation fileTree(dir: 'libs', include: ['*.aar'])
...
}

android {
 ...
 aaptOptions { noCompress 'dat', 'pak' }
 ...
}

3.3.2 Configuration for Java 1.8 support

3.3.3 Setting to support uncompressed assets

For JAVA 1.8 support, the following is reflected in build.gradle.

Modify the compression uncompressed settings for Assets files. Uncompressed option must

be set for data used inside AppSealing Secure WebView to read files normally. Modify the

build.gradle as below.

Currently, AppSealing Secure WebView requires uncompressed settings for the extensions

“dat” and “pak”

android {
...
 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
 }
...
}

Version 1.0

INTEGRATION & DEVELOPMENT

3.3.4 Build Tool setting

Set the below SDK in module build.gradle.AppSealing Secure WebView SDK version 16 or

higher is supported.

3.4.1 Initialize AppSealing Secure WebView

To use AppSealing Secure WebView in the activity you use, you need to initialize the process to

use <AppSealing Secure WebView>.In onCreate(),the following procedure is performed to

start AppSealing Secure WebView.

Please refer to the above described settings as it is applied to the sample project distributed

in the SDK.

defaultConfig {

 minSdkVersion 16
 targetSdkVersion 28

}

3.4 Application development guide

@Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
.
.
.
 setContentView(R.layout.inka_webview_activity);
 mPreferences = new ASPreferences();

 mASInitializer = new ASInitializer(new ASInitializer.
 ASInitListener() {
 @Override
 public void onASInitStarted() {
 Log.d(TAG, "onASInitStarted");
 }

Version 1.0

INTEGRATION & DEVELOPMENT

 @Override
 public void onASInitCancelled() {
 Log.d(TAG, "onASInitCancelled");
 }

 @Override
 public void onASInitFailed() {
 Log.d(TAG, "onASInitFailed");
 }

 @Override
 public void onASInitCompleted() {
 Log.d(TAG, "onASInitCompleted");
 initASetting();
 }

 @Override
 public void onASFirstRenderProcessReady() {

 }
 }, this);

 if (!mASInitializer.initSync(disableSandbox)) {
 // Something is wrong.
 }

3.4.2 Web contents loading

After the initialization process, create an instance of AppSealing Secure WebView and load the

desired page. To load the page, code as below.

In this case, [Applicaiontion_Root] /app/src/main/asset/index.html must exist. See sample

application codes.

Local page access example

boolean incognito = false;
 mASWebView = new ASWebView(MainActivity.this, incognito);
 mASWebView.loadUrl("http://google.com");

mASWebView.loadUrl("file:///android_asset/index.html");

Version 1.0

AppSealing Secure WebView, like Android WebView, provides a way to override the behavior of the

default web browser. AppSealing Secure WebView provides a method called setUIClient() that

matches the setWebChromeClient() method of Android WebView. Please refer to the example

below for specific usage.

INTEGRATION & DEVELOPMENT

Remote webpage access example

3.4.3 How to use setUIClient

mASWebView.loadUrl ("http://www.naver.com");

mASWebView.setUIClient(new ASUIClient(mASWebView) {
 @Override
 public boolean onJsAlert(ASWebView view, String url, String
message, ASJavascriptResult result) {
 return super.onJsAlert(view, url, message, result);
 }

 @Override
 public void onGeolocationPermissionsShowPrompt(ASWebView view,
java.lang.String origin,
 ASGeoLocationPermissionsCallback callback) {
 callback.invoke(origin, true, false);
 }

 @Override
 public void onPageLoadStarted(ASWebView view, java.lang.String
url) {
 Log.e(TAG, "onPageLoadStarted =" + url);
 mIsLoading = true;
 if (mUrlTextView != null)
 mUrlTextView.setText(url);

mStopReloadButton.setImageResource(android.R.drawable.ic_menu_close_clear_
cancel);
 }

 @Override
 public void onPageLoadStopped(ASWebView view, java.lang.String
url, ASUIClient.LoadStatus status) {
 Log.e(TAG, "onPageLoadStopped =" + url + " status=" +
status);
 mIsLoading = false;
 mStopReloadButton.setImageResource(R.drawable.ic_refresh);

 }

Version 1.0

Like Android WebView, it provides a way to override the behavior of the web browser

associated with each network connection that the web browser sends and receives.

AppSealing Secure WebView provides setResourceClient() method. This method is

mapped to the setResourceClient()>method of Android WebView. You can use it as

below

@Override
 public void onFullscreenToggled(ASWebView view, boolean
enterFullscreen) {
 super.onFullscreenToggled(view, enterFullscreen);
 Log.d(TAG, "onFullscreenToggled : " +
enterFullscreen);

 LinearLayout toolBar = (LinearLayout)
findViewById(R.id.toolbar);
 toolBar.setVisibility(enterFullscreen ? GONE :
VISIBLE);

 }
 @Override
 public boolean onConsoleMessage(ASWebView view, String
message, int lineNumber, String sourceId,
 ASUIClient.ConsoleMessageType messageType) {
 Log.d(TAG, "onConsoleMessage:" + message + "
source=" + sourceId + " line#=" + lineNumber);
 super.onConsoleMessage(view, message, lineNumber,
sourceId, messageType);
 return true;
 }
 // ...
 });

mASWebView.setResourceClient(new ASResourceClient(mASWebView) {
 @Override
 public void onLoadStarted(ASWebView view, String url) {
 Log.d(TAG, "onLoadStarted url=" + url);
 super.onLoadStarted(view, url);
 }

INTEGRATION & DEVELOPMENT

3.4.4 How to use setResourceClient

Version 1.0

By using the sample application source provided separately and various AppSealing APIs, you can
write the application in the form you want. For more information on the AppSealing API, see the
AppSealing API Document.

 @Override
 public void onLoadFinished(ASWebView view, String url)
{
 Log.d(TAG, "onLoadFinished url=" + url);
 super.onLoadFinished(view, url);
 }
@Override
 public ASWebResourceResponse
shouldInterceptLoadRequest(ASWebView view, ASWebResourceRequest
request) {
 Log.d(TAG, "shouldInterceptLoadRequest");
 return super.shouldInterceptLoadRequest(view,
request);

 }

 @Override
 public void onProgressChanged(ASWebView view, int
progressInPercent) {
 Log.d(TAG, "onProgressChanged Progress=" +
progressInPercent);
 super.onProgressChanged(view, progressInPercent);

mUrlTextView.removeCallbacks(mClearProgressRunnable);
 mProgressDrawable.setLevel((int) (progressInPercent
* 100));
 if (progressInPercent == 100)

mUrlTextView.postDelayed(mClearProgressRunnable,
COMPLETED_PROGRESS_TIMEOUT_MS);
 }

 @Override
 public void onReceivedLoadError(ASWebView view, int
errorCode, String description, String failingUrl) {
 Log.d(TAG,
 "onReceivedLoadError errorCode=" +
errorCode + " url=" + failingUrl + " Desc=" + description);
 super.onReceivedLoadError(view, errorCode,
description, failingUrl);
 }

 });

INTEGRATION & DEVELOPMENT

Version 1.0

APPLYING APPSEALING HYBRID APP SECURITY SERVICE

In order to operate the local HTML5 content security and the application's own security

function of the application that is equipped with the AppSealing Secure WebView SDK, Hybrid

App security service provided by Inca Networks must be applied.

1.Go to the AppSealing Developer Console page (https://developer.appsealing.com/).

2. Create account or log in to use Hybrid App security service.

3. Upload the Hybrid App with AppSealing Secure Webview and set the Hybrid App security

 service desired by the customer. And apply the set Hybrid App security service. (It takes a

 few minutes)

4. When the Hybrid App security service is finished, you can download the APK with the

 security service applied.

5. Download the APK and apply the signature again.

6. Verify the APK with security applied.

Hybrid App security service can be applied in the following order.

Please refer to the AppSealing Help Center for details on setting up the Hybrid App security

service.

Version 1.0

CHECK HYBRID APP SECURITY SERVICE IS APPLIED

In order to operate the local HTML5 content security and the application's own security

function of the application that is equipped with the AppSealing Secure WebView SDK, Hybrid

App security service provided by Inca Networks must be applied.

Local contents test

Remote contents test

1. Save the HTML content containing JavaScript in the android asset folder.

2. Make sure that the local HTML content is properly loaded in AppSealing Secure WebView

 before applying Hybrid App security service.

3. After checking the step #2, build the APK and apply the Hybrid App security service.

4. After applying the Hybrid App security service, download the generated APK.

5. Open the downloaded APK using the zip tool, and check if the encrypted JavaScript exists

 in the same name in the android asset folder.

6. After checking item 5, check if the locally saved HTML page is properly loaded from the

 downloaded APK.

1. Stores HTML content containing JavaScript on a remote web server.

2. Make sure that the HTML content of the remote web server is properly loaded in

 AppSealing Secure WebView before applying Hybrid App security service,

3. After checking the step #2, zip the HTML content to be applied to the encryption and

 security service among the HTML content of the remote web server and apply the Hybrid

 App security service.

4. After applying the security service, download the created zip file.

5. Open the downloaded zip file and check if there is JavaScript encrypted with the same

 path and name as the original zip file.

6. After checking the step #5, unzip the downloaded zip file and save it on the remote web

 server.

7. Check if the HTML page with Hybrid App security service is loaded properly in the

 AppSealing Secure WebView with Hybrid App security service.

Version 1.0

CHECK HYBRID APP SECURITY SERVICE IS APPLIED

Please contact us through the AppSealing Help Center (https://helpcenter.appsealing.com/)

for inquiries or technical support during the test.

Until the Hybrid App security service is applied to the APK, the encrypted Javascript page

cannot be loaded normally.

Version 1.0

